Example 1

consider the function: f(x,y) = x* — )*

of of
— =2x and — = —2
ax dy Y
These first derivatives are zero at x* = 0 and y* = 0. The Hessian
matrix of fis: [ 9°f o0°f 2 =
0x?2 dx dy 9) 0
HU=| 2 *f |~ 0 | -2
| Oy ox dy? - -

The Hessian matrix of fat (x*,y*) =H

The determinant H1 = 2 (positive), and the determinant
H2 =2(-2) -0(0) = -4 (negative). Then H 1s indefinite.

Since this matrix 1s neither positive definite nor negative definite, the
point (x* = 0, y* = 0) 1s a saddle point.




Example 2

Find the critical points of the function:
forx) = x7 +x;3 + 2x7 + 4x3 + 6

SOLUTION: The necessary conditions for the existence of

Int a 3
an extreme point a ;_f = 32 4+ 4x, = x,(3x; + 4) = 0 =
x|

of
Fele 3x5 + 8, = x;(3x, + 8) =0 o

From (1) x;, =0 or (- g), and from (2) x, = 0 or (- 2) . Then
these equations are satisfied at the points:

(0.0), (0-2), (-, 0),and (-5, -3)




To find the nature of these extreme points, we
have to use the sufficiency conditions. The second-
order partial derivatives of f are given by:

; ) of :=
g{=31§+4x, 5;2=3x5+8x1
———,]:6_);|-|-4 _2:6172*'8 '—'0

dx dx? ax, X,
The Hessian matrix of f1s given
by:
- 9f f — _
r-jl‘z:;la dzy O3 &r} + 4 U
H =
_(f _°fF o% f 0 (‘L‘{g + 8
- _fIi'-E;g Ty r:i'.Ei N




oy, +4 0

fox) =x7 + x5 + 27 + 4x3 + 6 H(f) =
{J (l‘ig + 8

6x, + 4 0

IfJ]=]6x|+4‘andJ3: O 6.[2_4_8’

the values of J, and J, and

the nature of the extreme point are as given below.

Value Value

Point X of J, of J, Nature of J Nature of X f(X)
(0,0) +4 +32 Positive definite Relative minimum 6
(0,~3) +4 —~32  Indefinite Saddle point 418/27
(H%,ﬂ) -4 -32 Indefinite Saddle point 194/27

(«—%, —_%) —4 + 32 Negative definite Relative maximum 50/3

— e e o =




1.7 CONSTRAINED PROBLEMS

1.7.1 Multivariable Optimization With
Equality Constraints

We consider the optimization of continuous functions

subjected to equality constraints:
Minimize f = f(X)

X

g_{(x) = U! j = I-nzu-- ] _,'-é”

Here m 1s less than or equal to n, otherwise (if m > n), the
problem becomes overdefined and, in general, there will be no
solution. There are several methods available for the solution of
this problem: The Constrained variation, Jacobian method,

Methods of direct substitution, and Lagrange multipliers.




1.7.1.1 Method of Direct Substitution

For a problem with n variables and m equality
constraints, it is theoretically possible to solve
simultaneously the m equality constraints and
express any set of m variables in terms of the
remaining n — m variables. When these expressions
are substituted into the original objective function,
there results a new objective function involving only
n — m variables. The new objective function is not
subjected to any constraint, and hence its optimum
can be found by using the unconstrained
optimization techniques.




Example 1

Minimize: f(x) = 4x] + 5x3
Subjectto: 2x;, + 3x, = 6
Either x, or x, can be eliminated without difficulty.

Solving for x;,

6_3.1?1
X, =

2 1
Substitute for x; in the Objective Function, the new equivalent

objective function 1n terms of a single variable x, 1s:

flx;) = 14x3 — 36x, + 36
The constraint in the original problem has now been eliminated, and
f(x,) 1s an unconstrained function with one independent variable.



We can now minimize the new objective function
by setting the first derivative of f equal to zero,
and solving for the optimal value of x,:
= 14x3 — 36x, + 36
df(x,) ) ) f{Iz)_ X2 2
=28x, — 36 =0 x¥=1.286
dx,

17(x) = 28 (positive), then X* 1s a local minimum.

Once x,™* 1s obtained, then, x,* can be directly obtained via

S0 =33 _1om
2 ) -

the relation (1): x,
flx) = 4x7 + 5x3
fomin = 4(1.071)% + 5(1.286)> = 12.85714

, then: x* =




F4 =SUMPRODUCT(B4:C4;B3:C3)
A D E

terms X122 x2*2
value 0 0
f 4 5

constraint
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Example 2

The profit analysis model:
Max the profitz=v.p—-c,—v.e, = ceeeeeeeene (D
The demand is represented by: v=1,500-24.6p  ............ (2)
Where: v = volume (quantity), p = price,

¢, = fixed cost = $10,000, ¢, = variable cost = $8 per unit.
Substituting values of ¢, and c, into (1), we obtain:
z=v.p-10,000-8v e 3)
Substituting (2) in (3):
z =1500p — 24.6p> — 10,000 — 8(1,500 — 24.6p)
z =1696.8p -24.6p>-22.000 ... 4)

Z—Z = 1696.8p -49.2p = 0 for the critical points, then:
p* =34.49

2
Z—pi =-49.2 (negative), then p* is a local maximum.
Substituting in (2): v¥ = 1500 — 24.6(34.49) = 651.55

Substituting in (3): z,.,. = (651.55)( 34.49) — 10,000 — 8(651.55) = 7259.56




1.7.1.2 Lagrange Method

The basic features of the Lagrange multiplier
method is given initially for a simple problem of
two variables with one constraint.

The extension of the method to a general
problem of n variables with m constraints is
given later.




Problem with Two Variables and One Constraint.

Consider the problem Minimize f(x,,x,)

subject to: g(x,.xy) = 0
Define Lagrange function/(x,,x,,A) = f(x;,x;) + Ag(x;,x5)

A 1s called the Lagrange multiplier.
L 1s treated as a function of the three variables x,, X,, and A.

Theorem: Necessary Conditions for Extremum:

B .
__L ("rlixj!}\) - _ai (-IHIE) + }\ —g (‘r]'!'rz) =0
X ox 0x,

dxy

aL af . g

Ex_z (x),x,A) = é;z (x1,0) + A EE (x;,%) = 0
oL

a (Il!xiu}\) - g(‘xlr'xl) = {]



Theorem: Sufficient Condition

A sufficient condition for f(X) to have a relative
minimum at X* is that the quadratic, O, defined by:

2L
Q=

dx10X>

evaluated at X = X* must be positive definite for all values
of dX for which the constraints are satisfied.
- If Q 1s negative definite for all choices of the admissible

variations dX, X* will be a constrained maximum of A X).
- It has been shown by Hancock that a necessary condition
for the quadratic form Q, to be positive (negative) definite
for all admissible variations dX 1s that each root of the
polynomial Z, defined by the following determinantal
equation, be positive (negative):

dx,dx,






Example

Find the solution of the following problem using the
Lagrange multiplier method:

fxy) =xly?

Subject to: g(x,y) =x*+y*-4=10

The Lagrange function is:

L(x,p,2) =f(x,y) +2g(x,y) =xTy? + Mx* +y*-4)
The necessary conditions for the extreme of f(x, y) give:

g_f; = Xx2y2420x =0  ....... () =P A==x3y2..... (4)

oL ol
5 =-2xy3 42y =0 ... @ =H A=xy? (3)
OL _ 242 4=

a X +y 4=0 ...



%x'3y'2 =xly4 =) %y-z =y =) %yz —
X*=71§y* Or: X2=%y2 ............ (6)

3): x2+y?-4=0

From(6):%y2+y2=4 — y2=§ m [(y*=2 g
Substituting in (6): | Xx* = %

w3 1 VB _9V3

2 16 V16 128

(5): A =x"Ty+ =)







1.218-z7

0.344

2.309

0.974-z
(1.218-2)

3.266

~

(1.218-z) [ (0.974- 2) (0) — (3.266)(3.266

f

+(2.309) | (0.344)(3.266) — (0.974-z)(2.309

0.344 2.309

0.974-z 3.266

3.266

3.266

- (0.344)
0

0

0.344 3.266 0.344 0.974-z
+2.309

2.309 0 2.309 3.266

)J -(0.344{ -(3.266)(2.309)} +

)] =0

/= - 0.344 (negative), Then x*,y* 1s a relative maximum
fH(x*,y*)=0.3248







00 da =

o I o T SR

239.3365

Solution. Using row operations Hs — R — 4R and K3 — Ry — 8H; and
then expanding along the first column, gives

1
0

0

2
—3
—8

3
—6
—15

—3 6
—& —15
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Necessary Conditions for a General Problem

The equations can be extended to the case of a general
problem with n variables and m equality constraints:

Minimize f(X) =f(X;, X,, ...... , X))
subjectto: g;(X) =0, j=12,....m

The Lagrange function, L, 1n this case 1s defined by introducing one
Lagrange multiplier kj for each constraint g (X) as:

L(—’:lﬂxﬁt- v vakpys }*]9}1*23-- . -ihm) :f(xj + >s‘lgl(x) + }‘EgZ(X) + -t F }‘mgm(x)

The necessary conditions for the extremum of L, are given by:

L o < . 9 :
— —I.— . —'J—r —_ 0? = l ,2 pu 4 =y
al'[' a.l:,- J"}I )\j axé E "

oL
— = g:(X) =0, = 1,2,...,



Sufficient Condition

A sufficient condition for f(X) to have relative minimum
at X* i1s that the quadratic, O, defined by:

i

0= 2 2 L dx; dx,

i=1j=10dx; 0X;

evaluated at X = X* must be positive definite for all values
of variations dX for which the constraints are satisfied.

If Q 1s negative definite for all choices of the admissible
variations dx;, X* will be a constrained maximum of f(X).

It has been shown by Hancock that a necessary condition for the
quadratic form Q, to be positive (negative) definite for all
admissible variations dX 1s that each root of the polynomial Zi,
defined by the following determinantal equation, be positive
(negative):






1.7.2 Multivariable Optimization With
Inequality Constraints

Consider the following problem: Minimize f(X)
subject to: g,(X) <0,7=1,2,....m

Kuhn-Tucker Conditions

The conditions to be satisfied at a constrained minimum
point, X*. These conditions are, in general, not sufficient to
ensure a relative minimum. However, there 1s a class of
problems, called convex programming problems for which
the Kuhn-Tucker conditions are necessary and sufficient for
a global minimum.



Kuhn-Tucker Conditions

The Kuhn-Tucker conditions can be stated as follows:

Z }u 0, i=12,..n
Py

Sx; d.r

Ng =0, j=12,...m
= 1,2,.

= 1,2,....m

A
L
S

8j
.

J

IV
=
oy

Note that 1f the problem 1s one of maximization or 1f the
constraints are of the type g; > 0, the A; have to be
nonpositive. On the other hand, if the problem 1s one of
maximization with constraints in the form g20, the Xj have
to be nonnegative.



Types of Nonlinear Programming
" Nonlinear objective function,
linear constraints.

"Nonlinear objective function
and nonlinear constraints.

" Linear objective function and
nonlinear constraints.



Nonlinear Objective Function and Linear
Constraints:

The Great Western Appliance Company sells two models of toaster ovens,
the Micro toaster (X,) and the Self-Clean Toaster Oven (X,).

The firm earns a profit of $28 for each Micro toaster regardless of the
number sold. Profits for the Self-Clean model, however, increase as more
units are sold because of fixed overhead. Profit on this model may be
expressed as 21 X, + 0.25 X,2.

Great Western’s profit is subject to two linear constraints on production
capacity and sales unit time available.

Max: 28X, + 21X, + 0.25X,2

Subject to:

X, + X, <1000 (units of production capacity),
0.5X; +0.4X, <500 (hours of sales time available).

X, X, > 0.

When an objective function contains a squared term and the problem
constraints are linear, 1t 1s called a quadratic programming problem.



An Excel Formulation of Great Western
Appliance’s Nonlinear Programming Problem.

PROGRAM 10.9
Excel 2010 Solver

A B C D E F G

Solution for Great 1 Great Western Appliance
Western Appliance NLP 2 Micro Self-Clean
Problem 3 Variables X1 X2
1 values | 0 1000
5
6 Terms X1 X2 X2*
7 | Calculated Values 0 1000 1000000  Profit
2 Profit 28 21 Q.25 21000
9
10 Constraints LHS Sien RHS
11 Capacity 1 1 1000 < 1000
12 Hours Available 0.5 0.4 400 < 500

|_

8 =SUMPRODUCT(SB$7:SDS$7,B8:D8) Set Objective: E8

9 By Changing cells: B4:C4
10 LHS To: Max
11 =SUMPRODUCT(5B8$4:5C54,811:C11) Subject to the Constraints:
12 | =SUMPRODUCT(5BS4:5C54,812:C12) E11:E12 <= G11:G12
Solving Method: GRG Nonlinear
2 C D [/l Make Variables Non-Negative

/ =B4 =C4 =C4n2




A A B C D E F G
1 Great Western Applience
2 Micre  Self-Clean
3 Variables X1 X2
4 values
5
6 Terms X1 X2 x2*
7 Calculated values 0 0 0 Profit
8 Profit 28 21 0.25 0
9
10 Constraints LHS Sign RHS
11 Capacity 1 1 0 < 1000
12 Hours available 0.5 0.4 0 = 500
13




LT 11

Set Objective: <E 53| E3|

To: @ Max ) Min ) Value Of: 0

By Chanaing Variable Cells:
$B44:6064 E3|

Subject to the Constraints:

SES11:6ES12 <= $GS11:SGS12 - | Add |

Make Unconstrained Variables Non-Megative

Select a Solving Method: GRG Monlinear |;| | E |
Solving Method
Select the GRIG Monlinear engine for Solver Problems that are smooth nonlinear. Select the LP Simplex

engine for linear Solver Problems, and select the Evolutionary engine for Salver problems that are
non-smooth.

| e s [ dwe |




Solution to Great Western Appliénce’s NP Problem
using Excel Solver:

A A B C D E F G H
1 Great Western Applience
2 Micre  Self-Clean
3 Variables X1 X2
4 values 0 1000
5
6 Terms X1 X2 x2*
-7 Calculated values 0 1000 1000000 Profit
8 Profit 28 21 0.25 271000
9
10 Constraints LHS Sign RHS
11 Capacity 1 1 1000 < 1000
12 Hours available 0.5 0.4 400 = 500
13




Both Nonlinear Objective Function and Nonlinear
Constraints.

The annual profit at a medium-sized (200-400 beds) Hospital
Corporation-owned hospital depends on the number of
medical patients admitted (X,) and the number of surgical
patients admitted (X,). The nonlinear objective function for
Hospicare 1s:

Max. 13X, + 6X X, +5X,+ 1/X,

The corporation 1dentifies three constraints, two of which are
also nonlinear, that affect operations. They are

2X,*+ 4X,? <90 (nursing capacity, in thousands of labor-days).
X, + <75 (x-ray capacity, in thousands).

8X, —X§X2 <61 (marketing budget required, in thousands of
).







N ——— D) TT [y -

An Excel Formulation of Hospicare Corp.’s =
NLP Problem:

R25 v Je

Hospicare Corp

1
E3
Evariahles X1 X2
4 Values 1 1
5]
6 Terms X1 X1® X1*X2 X2 X2’ 1/x2
7 (Calculated Values 1 1 1 1 1 1 Total Profit
8 Profit 13 0 6 5 1
9
10 Constraints LHS sign  RHS
11 Nursing 2 q 2 S0
12 X-Ray 1 1 < 75
13 |Budget 8 -2 2 61
14
15
16




Set Objective:

To: @ Max ) Min

By Chanaging Variable Cells:
$B85+:5C54

Subject to the Constraints:
SHE11:8HS13 <= §1§11:81613

Make Unconstrained Variables Non-Megative

Select a Solving Method: GRG Monlinear B | Options |
Solving Method

Select the GRG Monlinear engine for Solver Problems that are smooth nonlinear. Select the LP Simplex

enagine for linear Solver Problems, and select the Evolutionary engine for Solver problems that are
non-smooth.

| sohe || e |




A A J
2
E\r‘ariahles X1 X2

4 Values 6.066250 4.1
=
6 Terms X1 X1° X1*X2 X2 X2 1/x2

7 Calculated Values 6.066250 36.70949 24.87319 4.100253 68.93374 0.244 Total Profit
8 Profit 13 0 6 5 1 248.845671
9
10 Constraints LHS sign  RHS
11 Mursing 2 4 89.9999538 = 50
‘12 X-Ray 1 1 75 < 75
13 Budget -2 40.329564 < 61




Linear Objective Function with Nonlinear

Constraints

Thermlock Corp. produces massive rubber washers and gaskets
like the type used to seal joints on the NASA Space Shuttles. To do
s0, it combines two ingredients; rubber (X,) and oil (X,).

The cost of the industrial quality rubber used is $5 per pound and
the cost of the high viscosity oil is $7 per pound. Two of the three
constraints Thermlock faces are nonlinear. The firm’s objective
function and constraints are

Min. 5X, + 7X,

Subject to:

3X,+0.25X,? + 4X, + 0.3X,> > 125 (hardness constraint),
13X, + X;? > 80 (tensile strength),

0.7X, + X, = 17 (elasticity).



a Problem:

* Micrdoll Exeel - s wnes 54

B Fie Eoit Vew [t Fgmat Toos Dot OM Window lep

W= = - - T " e T

Excel Formulation Of Thermlocl;’s NLP

1 Thermlock Gaskets
2

_ﬂ.__ %l W

A value 2 2
: .

B cost 5 7

CEntar the objective and “Constrainis

Xl i

=H4

constraint coefficients.

1 value

A _|B[C[B

KA @ (wand
=B4%7 | =R44% =C4 | =443 Tatal

JEEAC R & (S

Iz

The vanakles are in thess cells. Bacauss of the nenlinear
terms, it makes more sense to intialize them to 2 rather

v than 1 to check that the formulas are comect.
H "

=SUMPRODUCT($B44:$C$4,B6:CE)

Sat up one column for each tem

that i1s neaeded in ather the oljective
function or a constraint.

1 1 Congirasnt 1 3 P2 4 03 =SUMFRODUCTISE$10$FE10.B11F11) > 125
e Constraint 2 13 1 =SUMPRODUCT(SB$10F$10 B12F12) > 80
18 Constrant 3| 0.7 1 =5SUMPRODUCT{§BS10:-§F§10 B13.F13) > 1T
14
The geal izin ES, and the cells Sat Target cel: [jiee A SN The constraints are
to charge are in B4 to C4. EqualTo:  Cpax  FMn  ©yamof 0 chee || nonlinear NOTE: In the
18 ¢ 8y Granging Calks: - Options dialeg box for
g |Ea B4 A aes | / this problem, assume
7 : Linear Madel 1s not
"%5" '?um“flfffitni?ﬁ'inl__ __!!!!EE__Iqthheka{i
el | Po1150013 == SI511:51513 =] A I

The constraints are all of the
form 2" (3 constraints).  J

hange I

[ L I

Eesat all

|




! Solution to Thermlock’s NLP Problem Using
~ Excel Solver:

X Microsoft Excel - captures.xls

] File Edlt View Insert Fomat Toos Data QM Window Help 18]
A B C D E & G H |
Thermlock Gaskets
X1 X2
value 3.326326 1467227
total
cost 5 7 119.3325

constraints

X1 X142 X173 X2 X272
value 3325326 11.05779 36.77076 14.67227 215.2756 Total
Constraint 1 3 0.25 4 0.3 136.0122 > 125
Constraint 2 13 1 80 > 80
Constraint 3 0.7 1 17 > 17

PR " . " . "Ny .
ot |||~ |Cr (| =D (k| —




Computational Procedures -Nonlinear
Programming

Unlike LP methods:
One disadvantage of NLP is that the solution procedures
to solve nonlinear problems do not always yield an
optimal solution in a finite number of steps. The solution
yielded may only be a local optimum, rather than a
global optimum. In other words, it may be an optimum
over a particular range, but not overall.
There is no general method for solving all nonlinear
problems.
Classical optimization techniques based on calculus, can
handle some special cases, usually simpler types of
problems.



Gradient method (Steepest ascent method)

It is an interactive procedure that
moves from one feasible solution to the
next in improving the value of the
objective function.

It has been computerized and can
handle problems with both nonlinear
constraints and objective.



Separable programming

" Linear representation of nonlinear
problem.

" Separable programming deals with a
class of problems in which the
objective and constraints are
approximated by linear functions.
In this way, the powerful simplex
algorithm may again be applied.



In general, work in the area of
NLP is the least charted and

the most ditficult of all the
quantitative analysis models.



