Example 1

consider the function: $f(x,y) = x^2 - y^2$

$$\frac{\partial f}{\partial x} = 2x$$
 and $\frac{\partial f}{\partial y} = -2y$

These first derivatives are zero at $x^* = 0$ and $y^* = 0$. The Hessian matrix of f is: $\begin{bmatrix}
 \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\
 \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2}
 \end{bmatrix} =
 \begin{bmatrix}
 2 & 0 \\
 0 & -2
 \end{bmatrix}$

The Hessian matrix of f at $(x^*, y^*) = H$

The determinant H1 = 2 (positive), and the determinant H2 = 2(-2) - 0(0) = -4 (negative). Then H is indefinite.

Since this matrix is neither positive definite nor negative definite, the point $(x^* = 0, y^* = 0)$ is a <u>saddle point</u>.

Example 2

Find the critical points of the function: $f(x_1, x_2) = x_1^3 + x_2^3 + 2x_1^2 + 4x_2^2 + 6$

SOLUTION: The necessary conditions for the existence of

an extreme point a
$$\frac{\partial f}{\partial x_1} = 3x_1^2 + 4x_1 = x_1(3x_1 + 4) = 0$$
 ... (1)

$$\frac{\partial f}{\partial x_2} = 3x_2^2 + 8x_2 = x_2(3x_2 + 8) = 0 \qquad \dots (2)$$

From (1) $x_1 = 0$ or $(-\frac{4}{3})$, and from (2) $x_2 = 0$ or $(-\frac{8}{3})$. Then these equations are satisfied at the points: $(0,0), (0,-\frac{8}{3}), (-\frac{4}{3}, 0), and (-\frac{4}{3}, -\frac{8}{3})$ To find the nature of these extreme points, we have to use the sufficiency conditions. The second-order partial derivatives of *f* are given by:

 $\frac{\partial f}{\partial x_1} = 3x_1^2 + 4x_1 \qquad \qquad \frac{\partial f}{\partial x_2} = 3x_2^2 + 8x_2$ $\frac{\partial^2 f}{\partial x_1^2} = 6x_1 + 4 \qquad \qquad \frac{\partial^2 f}{\partial x_2^2} = 6x_2 + 8 \qquad \qquad \frac{\partial^2 f}{\partial x_1 \partial x_2} = 0$

The Hessian matrix of *f* is given by:

$$H(f) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} \end{bmatrix} = \begin{bmatrix} 6x_1 + 4 & 0 \\ 0 & 6x_2 + 8 \end{bmatrix}$$

$$f(x_1,x_2) = x_1^3 + x_2^3 + 2x_1^2 + 4x_2^2 + 6 \quad \mathbf{H}(f) = \begin{bmatrix} 6x_1 + 4 & 0 \\ 0 & 6x_2 + 8 \end{bmatrix}$$

If
$$J_1 = |6x_1 + 4|$$
 and $J_2 = \begin{vmatrix} 6x_1 + 4 & 0 \\ 0 & 6x_2 + 8 \end{vmatrix}$, the values of J_1 and J_2 and

the nature of the extreme point are as given below.

Point X	Value of J_1	Value of J_2	Nature of J	Nature of X	$f(\mathbf{X})$
(0,0)	+4	+32	Positive definite	Relative minimum	6
$(0, -\frac{8}{3})$	+4	-32	Indefinite	Saddle point	418/27
$(-\frac{4}{3},0)$	-4	-32	Indefinite	Saddle point	194/27
$(-\frac{4}{3}, -\frac{8}{3})$	4	+32	Negative definite	Relative maximum	50/3

1.7 CONSTRAINED PROBLEMS

1.7.1 Multivariable Optimization With Equality Constraints

We consider the optimization of continuous functions subjected to equality constraints:

Minimize $f = f(\mathbf{X})$

subject to

$$g_j(\mathbf{X}) = 0, \qquad j = 1, 2, \dots, m$$

Here *m* is less than or equal to *n*; otherwise (if m > n), the problem becomes overdefined and, in general, there will be no solution. There are several methods available for the solution of this problem: The <u>Constrained variation</u>, Jacobian method, <u>Methods of direct substitution</u>, and <u>Lagrange multipliers</u>.

Where: $\mathbf{X} = \begin{cases} x_1 \\ x_2 \\ \vdots \\ x_n \end{cases}$

1.7.1.1 Method of Direct Substitution

For a problem with *n* variables and *m* equality constraints, it is theoretically possible to solve simultaneously the *m* equality constraints and express any set of *m* variables in terms of the remaining *n* — *m* variables. When these expressions are substituted into the original objective function, there results a new objective function involving only n - m variables. The new objective function is not subjected to any constraint, and hence its optimum can be found by using the unconstrained optimization techniques.

Example 1

Minimize:
$$f(\mathbf{x}) = 4x_1^2 + 5x_2^2$$

Subject to: $2x_1 + 3x_2 = 6$

Either x_1 or x_2 can be eliminated without difficulty. Solving for x_1 ,

 $x_1 = \frac{6-3x_2}{2}$

Substitute for x_1 in the Objective Function, the new equivalent objective function in terms of a single variable x_2 is:

$$f(x_2) = 14x_2^2 - 36x_2 + 36$$

The constraint in the original problem has now been eliminated, and $f(x_2)$ is an unconstrained function with one independent variable.

We can now minimize the new objective function by setting the first derivative of f equal to zero, and solving for the optimal value of x_2 : $f(x_2) = 14x_2^2 - 36x_2 + 36$ $\frac{df(x_2)}{dx_2} = 28x_2 - 36 = 0 \quad x_2^* = 1.286$ f''(x) = 28 (positive), then X* is a local minimum. Once x_2^* is obtained, then, x_1^* can be directly obtained via the relation (1): $x_1 = \frac{6 - 3x_2}{2}$, then: $x_1^* = \frac{6 - 3x_2^*}{2} = 1.071$ $f(\mathbf{x}) = 4x_1^2 + 5x_2^2$ $f_{min} = 4(1.071)^2 + 5(1.286)^2 = 12.85714$

Solving Using Excel

Problem: Minimize: $f(\mathbf{x}) = 4x_1^2 + 5x_2^2$ Subject to: $2x_1 + 3x_2 = 6$

	F4 ▼ (<i>f</i> * =SUMPRODUCT(B4:C4;B3:C3)											
	А	В	С	D	E	F	G	Н	I			
1												
2	terms	x1^2	x2^2	x1	x2							
3	value	0	0									
4	f	4	5			0						
5												
6	constraint			2	3	0	=	6				
7												

B3: $= D3^{2}$

C3: $= E3^{2}$

F4: =SUMPRODUCT(B4:C4;B3:C3)

F6: = SUMPRODUCT(D6:E6;D3:E3)

X	0 · C	- -					NLP-	1 - Mic	rosoft E	xcel					- 6	23
F	ile Hom	e In	sert	Page Layou	t Formulas	Data	Review	View	Add-In:	5					a (?) — ₽	23
	From Access From Web From Text	rom Oth Sources	ner E ∞ Cor	xisting nnections	Refresh All - Cor Pro e Edi	perties	À ↓ A Z Z ↓ Z A Z ↓ Sort	Filter	K Clear Reappi Advan	ly Tex Colu	tto Rem imns Dupli	Data Data Cons ove cates	Validation 👻 olidate -If Analysis 👻	 ⇒ Group ▼ ↓ Ungroup ▼ Subtotal 	■	
	Get	External	Data		Connecti	ons	Sor	t & Filter	r			Data Tools		Outline	Analysis	_
	F4		▼ (°	f _x	=SUMPRODU	ICT(B4:C4;E	33:C3)	1								×
4	A		В	С	D	E	F	G	H		J	K	L	M	N	
1	torme	v	142	v2^2	v1	v2										
2	valuo	^	0	×2 2	×1	~~										
3	f		4	5			0	1								
4	•		4	5			0	à				•				
6	constrai	Solver	Param	eters							×					
7																
8		Se	e <u>t</u> Objecti	ve:	\$F\$4											
9		Та		<u></u>	<u></u>	~										
10			<i>.</i> (<u>M</u> ax	(●) Mi <u>n</u>	<u> </u>	or:									
12		B	/ Changin	g Variable Ce	ells:											
13		\$1	D\$3:\$E\$3													
14		51	biect to I	be Constrair	nte:											
15			20,000.001		1051					odd						
16									7	Ann						-
18										<u>C</u> hange						
19										Delete						
20										Delete						
21									E	eset All						-
22										205001111						
24								~	Ŀ	ad/Save						
25			Ma <u>k</u> e U	nconstrained	Variables Non-N	gative										
26	► M She	Sg	elect a Sol	lving Method	: GRG	Nonlinear		~		Options						•
Poi	nt		Solvina Mr	atbod										100% 😑		Ð
2	start	R	Luke File	walker	🗁 Sprin	g 2015	P	ecture-N	LP-1 - Mic	ro [🔣 Microsoft	Excel - NLP-1		EN 🙎 1	😼 🧐 11:47 .	ص

	Image: Image											
F	ile Home	Insert	Page Layout	Formulas	Data	Review	View	Add-Ins				
	From Access From Web From Text Sou	n Other Eurces T Cor	xisting R nnections	efresh All -	nections erties Links	$ \begin{array}{c} A \\ Z \\ Z \\ A \\ A \\ \end{array} \begin{array}{c} A \\ Z \\ A \\ \end{array} \begin{array}{c} A \\ Z \\ A \\ \end{array} \end{array} $	Filter	🕏 Clear 🛃 Reapply 🖉 Advanced	Text to Columns D			
	Get Exte	ernal Data		Connection	ns	Sor	t & Filte	ſ				
	H6	T (0	<i>f</i> ∗	=SUMPRODU	ст(в4:с4	;B3:C3)						
	A	B	С	D	E	F	G	H	I.			
1												
2	terms	x1^2	x2^2	x1	x2							
3	value	0	0									
4	f	4	5			0						
5												
6	constraint			2	3	0	=	6				
7												
8			Add Con	straint								
9												
10			Cell Refe	rence:		Const	raint:					
11			\$ F \$6		F		:6l					
12			+1 +0				~~1					
14							C	- ·				
14				<u>2</u> K		Add		<u>C</u> ancel				
10												

X 🗐 🔊 - (° - 1	Ŧ			N	LP-1 - M	icrosoft Exce	I						e XX
File Home	Insert Page	Layout Forr	mulas Data	Review	View	Add-Ins						ے 🕥 ۵	er 23
From Access			Connections	AZ		Ҡ Clear		1000 1000	😹 Data Valida	tion -	🔿 Group 🕤	🖷 🔒 Solv	er
🚯 From Web			Properties	Z* ZA		Reapply		10000 10000	📑 Consolidate	2	Ungroup 🗸		
From Text Sou	n Other Existin urces * Connect	g Refresh ions All - ©	🔊 Edit Links	Z↓ Sort	Filter	Advanced	Text to Columns	Remove Duplicates	; 📴 What-If Ana	alysis –	Subtotal		
Get Exte	Colore Doorer								a Tools		Outline	G Analys	is
	Solver Parame	ters											~
A							,		K	L	М	N	
1	Se <u>t</u> Objective	a:	\$F\$4				[
2 terms	Tor			- L	0			_					
3 value	10.	/ <u>m</u> ax 💽		aiue Or:	0								
A f	<u>By</u> Changing	Variable Cells:											
5	\$D\$3:\$E\$3						(1					
6 constraint	C. Line Line Li	- Caralusiatas											
7		e Constraints:						-					
8	ρΓ ρΟ — ρ ΠρΟ	,					<u>A</u> dd						
9							Change						
10													
11							<u>D</u> elete						
12								_					
13						E	<u>t</u> eset All						
15							ad/Saua	- I					
16							ad/save						
17	Ma <u>k</u> e Un	constrained Variab	les Non-Negative			_							
18	S <u>e</u> lect a Solv	ing Method:	GRG Nonline	ar		~	Options						
19	Solving Met	bod						- I					
20	Select the (SRG Nonlinear end	ine for Solver Prob	ems that are	smooth po	linear. Select H	he I R Simpley						
21	engine for	inear Solver Proble	ems, and select the	Evolutionary	engine for	Solver problem	s that are	`					
23	non-smooth	ı.											
24				_									
25	Help			>	<u>S</u> olve		Cl <u>o</u> se						
26													
Enter	A	A									100% 🕞		
🛃 start 🔰	📿 Luke Filewalka	r 🗲	Spring 2015	0	P Lecture-	NLP-1 - Micro	🔀 Mic	rosoft Exc	el - NLP-1		EN 😰 1	B 9, 11	ص 49:

🗶 🛃 🤊 - 🕅 - -					NLP-1 - Microsoft Exce			
File Home	Insert Pa	age Layout	Formulas	Data Review	View Add-Ins			a 🕜 🗆 🗗 🔀
From Access From Web From Text From Text Get Extern	Other Exis conne aal Data	sting ections All	esh Connections	tions $\begin{array}{c} A \\ z \\ es \\ cs \end{array}$ $\begin{array}{c} A \\ Z \\ A \\ A \\ S \end{array}$ Sort	Filter	Text to Remove Columns Duplicates What Data Tools	/alidation ▼ 🗳 G olidate 🗳 U If Analysis ▼ 🟭 Si O	roup · 마를 유 Solver ngroup · 마를 ubtotal utline II Analysis
F4	- (0	<i>f</i> _x =S	UMPRODUCT(B4:C4;B3:C3)				*
A	В	С	D	E F	G H	I J K	L	M N 🛣
1 2 terms 3 value	x1^2 0	x2^2 0	Solver Res O Solver for	ults und a solution. A	All Constraints and optima	lity		
4 f 5 6 constraint	4	5	Condition ○ Keep O Resto	s are satisfied. Solver Solution		Reports Answer Sensitivity Limits		
9 10			Return	n to Solver Paran	neters Dialog	Outline Reports		
11 12 13 14 15			Solver for satisfied. When the solution.	und a solution. A	ncel II Constraints and optimal used, Solver has found at I P is used, this means Solv	Save Scenario ty conditions are east a local optimal er has found a global		=
17 18 19 20			optimal s	olution.				
21 22 23 24								
25 26 H + H Sheet1	Sheet2	Sheet3 / Sh	eet4 / Sheet5	5 / t 2 /				
🦺 start	🧟 Luke Filewa	alker	🔁 Spring 20	15	P Lecture-NLP-1 - Micro	X Microsoft Excel - NLP-1		ص 11:50 🖉 🛃

X	🚽 🖉 = (°l = [Ŧ					NLP-1	- Mic	rosoft E	xcel
Fi	le Home	Insert	Page Layout	Formulas	Data		Review V	'iew	Add-Ins	
	From Access From Web From Text Sou Get Exte	n Other E urces + Con rnal Data	kisting R inections	Image: Connections Image: Connections Refresh All → Connections			Sort F	ilter 8. Filter	K Clear Reappl Advanc	y Text Colur
	N26	• (=	f _x							
	Α	В	С	D	E		F	G	Н	I
1										
2	terms	x1^2	x2^2	x1	x2					
3	value	1.148	1.653	1.071	1.286	6				
4	f	4	5				12.85714			
5										
6	constraint			2	3		6	=	6	
7										
8										
0										

Example 2

The profit analysis model: Max the profit $z = v.p - c_f - v.c_v$(1) The demand is represented by: v = 1,500 - 24.6p......(2) Where: v = volume (quantity), p = price, $c_f = fixed cost = $10,000, c_v = variable cost = $8 per unit.$ Substituting values of c_f and c_v into (1), we obtain: z = v.p - 10,000 - 8v.....(3) Substituting (2) in (3): $z = 1500p - 24.6p^2 - 10,000 - 8(1,500 - 24.6p)$ $z = 1696.8p - 24.6p^2 - 22,000$(4) $\frac{dz}{dp}$ = 1696.8p -49.2p = 0 for the critical points, then: p* = 34.49 $\frac{d^2z}{dp^2} = -49.2 \text{ (negative), then } p^* \text{ is a } \underline{\text{local maximum}}.$ Substituting in (2): v* = 1500 - 24.6(34.49) = 651.55 Substituting in (3): $z_{max} = (651.55)(34.49) - 10,000 - 8(651.55) = 7259.56$

1.7.1.2 Lagrange Method

The basic features of the Lagrange multiplier method is given initially for a simple <u>problem of</u> <u>two variables with one constraint</u>. The extension of the method to <u>a general</u> <u>problem of *n* variables with *m* constraints is given later.</u>

Problem with Two Variables and One Constraint.

Consider the problem Minimize $f(x_1, x_2)$

subject to: $g(x_1, x_2) = 0$

Define Lagrange function $L(x_1, x_2, \lambda) = f(x_1, x_2) + \lambda g(x_1, x_2)$

 λ is called the <u>Lagrange multiplier</u>. *L* is treated as a function of the three variables x_1 , x_2 , and λ . Theorem: Necessary Conditions for Extremum:

$$\frac{\partial L}{\partial x_1} (x_1, x_2, \lambda) = \frac{\partial f}{\partial x_1} (x_1, x_2) + \lambda \frac{\partial g}{\partial x_1} (x_1, x_2) = 0$$
$$\frac{\partial L}{\partial x_2} (x_1, x_2, \lambda) = \frac{\partial f}{\partial x_2} (x_1, x_2) + \lambda \frac{\partial g}{\partial x_2} (x_1, x_2) = 0$$
$$\frac{\partial L}{\partial \lambda} (x_1, x_2, \lambda) = g(x_1, x_2) = 0$$

Theorem: Sufficient Condition

A sufficient condition for *f*(X) to have a relative minimum at X* is that the quadratic, *Q*, defined by:

$$\mathbf{Q} = \frac{\partial^2 L}{\partial x_1 \partial x_2} \, dx_1 \, dx_2$$

evaluated at $X = X^*$ must be positive definite for all values of dX for which the constraints are satisfied.

- If Q is negative definite for all choices of the admissible variations *dX*, X* will be a constrained maximum of *f*(X).

- It has been shown by Hancock that a necessary condition for the quadratic form Q, to be **positive** (negative) definite for all admissible variations dX is that each root of the polynomial Z, defined by the following determinantal equation, be **positive** (negative):

where

$$L_{11} = \frac{\partial^2 L}{\partial x_1^2}\Big|_{(\mathbf{X}^*,\lambda^*)} \qquad L_{12} = \frac{\partial^2 L}{\partial x_1 \partial x_2}\Big|_{(\mathbf{X}^*,\lambda^*)} = L_{21} \qquad L_{22} = \frac{\partial^2 L}{\partial x_2^2}\Big|_{(\mathbf{X}^*,\lambda^*)} = 0$$
$$g_{11} = \frac{\partial g_1}{\partial x_2}\Big|_{(\mathbf{X}^*,\lambda^*)} \qquad g_{12} = \frac{\partial g_1}{\partial x_2}\Big|_{(\mathbf{X}^*,\lambda^*)}$$

0

Example

Find the solution of the following problem using the Lagrange multiplier method:

 $f(x,y) = x^{-1}y^{-2}$ Subject to: $g(x,y) = x^2 + y^2 - 4 = 0$ **The Lagrange function is:** $L(x,y,\lambda) = f(x,y) + \lambda g(x,y) = x^{-1}y^{-2} + \lambda(x^2 + y^2 - 4)$ The necessary conditions for the extreme of f(x, y) give: $\frac{\partial L}{\partial x} = -x^{-2}y^{-2} + 2\lambda x = 0 \qquad \dots \qquad (1) \implies \lambda = \frac{1}{2}x^{-3}y^{-2} \dots \qquad (4)$ $\frac{\partial L}{\partial y} = -2x^{-1}y^{-3} + 2\lambda y = 0 \quad \dots \quad (2) \implies \lambda = x^{-1}y^{-4} \quad \dots \quad (5)$ $\frac{\partial L}{\partial \lambda} = x^2 + y^2 - 4 = 0 \qquad \dots (3) \qquad \text{From (4), (5): } \frac{1}{2}x^{-3}y^{-2} = x^{-1}y^{-4}$

Th	ne determ	inant:	$L_{11} - z$ L_{21} g_{11}	L_{12} $L_{22} - z$ g_{12}	811 812 0	= 0		
	$\frac{\partial^2 L}{\partial x_1^2}\Big _{(\mathbf{X}^*,\lambda^*)} =$	z $\frac{\partial}{\partial x}$	$\frac{\partial^2 L}{\partial x_2}\Big _{(\mathbf{X}^*,\mathbf{x})}$	λ*)	$\frac{\partial g_1}{\partial x_1}$	(X *,λ*)	C	0
ð	$\frac{\partial^2 L}{\partial x_1 \partial x_2}\Big _{(\mathbf{X}^*, \lambda^*)}$		$\frac{\partial^2 L}{\partial x_2^2}\Big _{(\mathbf{X}^*)}$	-Ζ ,λ*)	$\frac{\partial g_1}{\partial x_2}$	(X*, λ*)	=0	
	$\frac{\partial g_1}{\partial x_1}\Big _{(\mathbf{X}^*,\lambda^*)}$		$\frac{\partial g_1}{\partial x_2}\Big _{(\mathbf{X}^*)}$,λ*)	()		
1	.218 -z	0.344	2.3	09				
(0.344	0.974 -z	3.20	66 =	0			
	2.309	3.266	С					

					Same	196.0015			
	1.2	18-z	0.34	4 2	.309			1210-T	
	0.3	44	0.974	4-z 3	.266				
	2.3	09	3.26	6	0				
(1.21	8-z)	0.974-z 3 266	3.266 0	- (0.344)	0.344	3.266 0	+ 2.309	0.344 2.309	0.974-z 3.266
(1.2)	(8- z)	$\left((0.974-z)\right)$) (0) – (.	l 3.266)(3.20	66) - (().344 (3	3.266)(2.3	(09) +	
+ (2.	309)	(0.344)(3	8.266) –	- (0.974-z)((2.309)	= 0			
Z= f*(= - 0. (x*,y	.344 (neg) = 0.32	gative) 248	, Then x	*,y* is a	a relativ	e maxin	num	

Determinant sign to the second second

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 8 & 8 & 9 \end{bmatrix}$$

$$\det A = 1 \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 2 \begin{vmatrix} 4 & 6 \\ 8 & 9 \end{vmatrix} + 3 \begin{vmatrix} 4 & 5 \\ 8 & 8 \end{vmatrix}$$
$$= -3 + 24 - 24$$

$$= -3$$

$$\begin{array}{cccccccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 8 & 8 & 9 \end{array}$$

Solution. Using row operations $R_2 \rightarrow R_2 - 4R_1$ and $R_3 \rightarrow R_3 - 8R_1$ and then expanding along the first column, gives

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 8 & 8 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -8 & -15 \end{vmatrix} = \begin{vmatrix} -3 & -6 \\ -8 & -15 \end{vmatrix}$$

$$= -3 \begin{vmatrix} 1 & 2 \\ -8 & -15 \end{vmatrix} = R_2 \longrightarrow R_2 + 8R_1$$

$$= -3 \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} = -3[1(1)-2(0)] = -3(1) = -3$$

http://matrix.reshish.com/determinant.php

← → C (S) matrix.reshish.com/determinant.php

Determinant	Here you can calcula	te a determinant of a matrix with com	plex r
Inverse Matrix	solution. Determinant elements.	t is calculated by reducing a matrix to r	ow ec
Matrix Power	Have questions?	Matrix input	x
Matrix Transpose		Complex numbers (more)	
Matri× Multiplication		Fractional 💌 🧭	
Matrix Addition/Subtraction		Nº A_1 A_2 A_3 1123	
		2 4 5 6	
		3 8 8 9	Snow solution
	[Reset Fill empty cells with zero	Result:
		Very detailed solution Calculate	Determinant is -3

Necessary Conditions for a General Problem

The equations can be extended to the case of a general problem with *n* variables and *m* equality constraints:

Minimize
$$f(\mathbf{X}) = f(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$$

subject to: $g_j(\mathbf{X}) = 0, \quad j = 1, 2, ..., m$

The Lagrange function, L, in this case is defined by introducing one Lagrange multiplier λ_i for each constraint $g_i(X)$ as:

 $L(x_1, x_2, \ldots, x_n, \lambda_1, \lambda_2, \ldots, \lambda_m) = f(\mathbf{X}) + \lambda_1 g_1(\mathbf{X}) + \lambda_2 g_2(\mathbf{X}) + \cdots + \lambda_m g_m(\mathbf{X})$

The necessary conditions for the extremum of L, are given by:

$$\frac{\partial L}{\partial x_i} = \frac{\partial f}{\partial x_i} + \sum_{j=1}^m \lambda_j \frac{\partial g_j}{\partial x_i} = 0, \qquad i = 1, 2, \dots, n$$

 $\frac{\partial L}{\partial \lambda_j} = g_j(\mathbf{X}) = 0, \quad j = 1, 2, \dots, m$

Sufficient Condition

A sufficient condition for *f*(X) to have relative minimum at X* is that the quadratic, *Q*, defined by:

$$Q = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^2 L}{\partial x_i \, \partial x_j} \, dx_i \, dx_j$$

evaluated at $X = X^*$ must be positive definite for all values of variations dX for which the constraints are satisfied. If Q is negative definite for all choices of the admissible variations dx_i , X* will be a constrained maximum of f(X). It has been shown by Hancock that a necessary condition for the quadratic form Q, to be positive (negative) definite for all admissible variations dX is that each root of the polynomial Zi, defined by the following determinantal equation, be positive (negative):

$$\begin{vmatrix} L_{11} - z & L_{12} & L_{13} & \cdots & L_{1n} & g_{11} & g_{21} & \cdots & g_{m1} \\ L_{21} & L_{22} - z & L_{23} & \cdots & L_{2n} & g_{12} & g_{22} & \cdots & g_{m2} \\ \vdots & & & & & & \\ L_{n1} & L_{n2} & L_{n3} & \cdots & L_{nn} - z & g_{1n} & g_{2n} & \cdots & g_{mn} \\ g_{11} & g_{12} & g_{13} & \cdots & g_{1n} & 0 & 0 & \cdots & 0 \\ g_{21} & g_{22} & g_{23} & \cdots & g_{2n} & 0 & 0 & \cdots & 0 \\ \vdots & & & & & & \\ g_{m1} & g_{m2} & g_{m3} & \cdots & g_{mn} & 0 & 0 & \cdots & 0 \end{vmatrix} = 0$$

Where:

$$L_{ij} = \frac{\partial^2 L}{\partial x_i \, \partial x_j} \left(\mathbf{X}^*, \, \lambda^* \right) , \quad g_{ij} = \frac{\partial g_i}{\partial x_j} \left(\mathbf{X}^* \right)$$

This equation on expansion, leads to an (n - m)th-order polynomial in *z*. If some of the roots of this polynomial are positive while the others are negative, the point X* is not an extreme point.

1.7.2 Multivariable Optimization With Inequality Constraints

Consider the following problem: Minimize f(X)subject to: $g_j(X) \le 0, j = 1, 2, ..., m$

Kuhn-Tucker Conditions

The conditions to be satisfied at a constrained minimum point, X*. These conditions are, in general, not sufficient to ensure a relative minimum. However, there is a class of problems, called *convex programming problems* for which the Kuhn-Tucker conditions are necessary and sufficient for a global minimum.

Kuhn-Tucker Conditions

The Kuhn-Tucker conditions can be stated as follows:

$$\frac{\partial f}{\partial x_i} + \sum_{j=1}^m \lambda_j \frac{\partial g_j}{\partial x_i} = 0, \qquad i = 1, 2, \dots, n$$

$\lambda_j g_j = 0,$	$j = 1, 2, \ldots, m$
$g_j \leq 0,$	$j = 1, 2, \ldots, m$
$\lambda_i \geq 0$,	$j = 1, 2, \ldots, m$

Note that if the problem is one of maximization or if the constraints are of the type $g_j \ge 0$, the λ_j have to be nonpositive. On the other hand, if the problem is one of maximization with constraints in the form $g_j \ge 0$, the λ_j have to be nonnegative.

Types of Nonlinear Programming Nonlinear objective function, linear constraints. Nonlinear objective function and nonlinear constraints. Linear objective function and nonlinear constraints.

Nonlinear Objective Function and Linear Constraints:

The Great Western Appliance Company sells two models of toaster ovens, the Micro toaster (X_1) and the Self-Clean Toaster Oven (X_2) . The firm earns a profit of \$28 for each Micro toaster regardless of the number sold. Profits for the Self-Clean model, however, increase as more units are sold because of fixed overhead. Profit on this model may be expressed as $21 X_2 + 0.25 X_2^2$.

Great Western's profit is subject to two linear constraints on production capacity and sales unit time available.

Max: $28X_1 + 21X_2 + 0.25X_2^2$ Subject to:

 $X_1 + X_2 \le 1000$ (units of production capacity), $0.5X_1 + 0.4X_2 \le 500$ (hours of sales time available). $X_1, X_2 \ge 0.$

When an objective function contains a squared term and the problem constraints are linear, it is called a *quadratic programming* problem.

An Excel Formulation of Great Western Appliance's Nonlinear Programming Problem.

PROGRAM 10.9

Excel 2010 Solver Solution for Great Western Appliance NLP Problem

	А	В	С	D	E	F	G
1	Great Western A	pplianc	е				
2		Micro	Self-Clean				
3	Variables	X1	X2				
4	Values	0	1000				
5							
6	Terms	X1	X2	X2 ²			
7	Calculated Values	0	1000	1000000	Profit		
8	Profit	28	21	0.25	21000		
9							
10	Constraints				LHS	Sign	RHS
11	Capacity	1	1		1000	<u> </u>	1000
12	Hours Available	0.5	0.4		400	<u><</u>	500

Key Formulas

Solver Parameter Inputs and Selections

Set Objective: E8 By Changing cells: B4:C4 To: Max Subject to the Constraints: E11:E12 <= G11:G12 Solving Method: GRG Nonlinear ☑ Make Variables Non-Negative

Input Screen			Max: 28X ₁ X ₁ 0.5X ₁					
	А	В	С	D	E	F	G	Н
1 Great Western Applience								
2		Micro	Self-Clean					
3	Variables	X1	X2					
4	values							
5								
6	Terms	X1	X2	X2 ²				
7	Calculated values	0	0	0	Profit			
8	Profit	28	21	0.25	0			
9								
10	Constraints				LHS	Sign	RHS	
11	Capacity	1	1		0	≤	1000	
12	Hours available	0.5	0.4		0	≤	500	
13								

er Parameters			X	\$010\$000 0 \$ •
Set Objective:	\$E\$8			
To: () <u>M</u> ax	© Mi <u>n</u>	0		PH DANKEL
By Changing Variable Cells:				
\$8\$4:\$C\$4				
Subject to the Constraints:				
\$E\$11:\$E\$12 <= \$G\$11:\$G	\$\$12	^ <u>A</u>	dd	
		Cha	ange	
			ete	
		Rese	et All	
		- Load	/Save	
Make Unconstrained Var	riables Non-Negative			
Select a Solving Method:	GRG Nonlinear	▼ Opt	ions	
Solving Method				
Select the GRG Nonlinear e engine for linear Solver Pro non-smooth.	engine for Solver Problems that are oblems, and select the Evolutionar	smooth nonlinear. Select the I y engine for Solver problems th	LP Simplex nat are	
Help	F	Solve	Close	36

Solution to Great Western Appliance's NLP Problem using Excel Solver:

1	А	В	С	D	E	F	G	Н
1	Great Western Ap							
2		Micro	Self-Clean					
3	Variables	X1	X2					
4	values	0	1000					
5								
6	Terms	X1	X2	X2 ²				
7	Calculated values	0	1000	1000000	Profit			
8	Profit	28	21	0.25	271000			
9								
10	Constraints				LHS	Sign	RHS	
11	Capacity	1	1		1000	≤	1000	
12	Hours available	0.5	0.4		400	≤	500	
13								
1.4								

Both Nonlinear Objective Function and Nonlinear Constraints.

The annual profit at a medium-sized (200-400 beds) Hospital Corporation-owned hospital depends on the number of medical patients admitted (X_1) and the number of surgical patients admitted (X_2) . The nonlinear objective function for Hospicare is:

Max. $13X_1 + 6X_1X_2 + 5X_2 + 1/X_2$

The corporation identifies three constraints, two of which are also nonlinear, that affect operations. They are $2X_1^2 + 4X_2^2 \le 90$ (nursing capacity, in thousands of labor-days). \leq 75 (x-ray capacity, in thousands). $X_1 +$ $8X_1 - X^2 X_2 \le 61$ (marketing budget required, in thousands of \$).

Max: $13X_1 + 6X_1X_2 + 5X_2 + 1/X_2$ Subject to: $2X_1^2 + 4X_2^2 \le 90$ $X_1 + X_2^3 \le 75$ $8X_1 - 2X_2 \le 61$

An Excel Formulation of Hospicare Corp.'s NLP Problem:

	R25 👻 💿	f_{x}									_
	А	В	С	D	E	F	G	Н	I.	J	
1	Hospicare Corp										
2											
3	Variables	X1	X2								
4	Values	1	1								
5											
6	Terms	X1	X1 ²	X1*X2	X2	X2 ³	1/X2				
7	Calculated Values	1	1	1	1	1	1	Total Profit			
8	Profit	13	0	6	5		1				
9											
10	Constraints							LHS	Sign	RHS	
11	Nursing		2		4				≤	90	
12	X-Ray	1				1			≤	75	
13	Budget	8			-2				≤	61	
14											
15		7	** • • • •								
16	Max: $13X_1 + 6X_2$	$X_1 X_2 + 5$	$X_2 + 1/X_2$	2							
	$2X_1^2 + 4X_1^2$	$_{2}^{2} \leq 90$									
	$X_1 + \lambda$	$X_2^3 \le 75$								40	
	$8X_1 - 2X$	$L_2 \leq 61$									

olver Parameters					
Se <u>t</u> Objective:	1\$8		1	•	
To: O Max O M	′li <u>n</u>	0			PM BARS
By Changing Variable Cells:					
\$B\$4:\$C\$4			Ē	•	
Subject to the Constraints:					
\$H\$11:\$H\$13 <= \$J\$11:\$J\$13		*	Add		
			<u>C</u> hange		
			<u>D</u> elete		
			Decet All		
			<u>N</u> eace Air		
		-	<u>L</u> oad/Save		
Make Unconstrained Variable	s Non-Negative				
Select a Solving Method:	GRG Nonlinear	•	Options		
Solving Method					
Select the GRG Nonlinear engine engine for linear Solver Problem non-smooth.	e for Solver Problems that are is, and select the Evolutionary	smooth nonlinear. Se engine for Solver pro	ect the LP Simplex oblems that are		
Help	Γ	Solve	Close		41

27		all -	S. C. M.	17 1 1		- Gittade ,				IPM BARREL THEOG	
	А	В	С	D	E	F	G	Н	I.	J	
2											
3	Variables	X1	X2								
4	Values	6.066259	4.1								
5											
6	Terms	X1	X1 ²	X1*X2	X2	X2 ³	1/X2				
7	Calculated Values	6.066259	36.79949	24.87319	4.100253	68.93374	0.244	Total Profit			
8	Profit	13	0	6	5		1	248.845671			
9											
10	Constraints							LHS	Sign	RHS	
11	Nursing		2		4			89.999998	≤	90	
12	X-Ray	1				1		75	≤	75	
13	Budget	8			-2			40.329564	≤	61	
14											

Linear Objective Function with Nonlinear Constraints

Thermlock Corp. produces massive rubber washers and gaskets like the type used to seal joints on the NASA Space Shuttles. To do so, it combines two ingredients; rubber (X_1) and oil (X_2) . The cost of the industrial quality rubber used is \$5 per pound and the cost of the high viscosity oil is \$7 per pound. Two of the three constraints Thermlock faces are nonlinear. The firm's objective function and constraints are

Min. $5X_1 + 7X_2$ Subject to: $3X_1 + 0.25X_1^2 + 4X_2 + 0.3X_2^2 \ge 125$ (hardness constraint), $13X_1 + X_1^3 \ge 80$ (tensile strength), $0.7X_1 + X_2 \ge 17$ (elasticity).

Excel Formulation of Thermlock's NLP Problem:

•

Solution to Thermlock's NLP Problem Using Excel Solver:

_ 8

Microsoft Excel - captures.xls

8	Eile Edit View Insert Format Tools Data QM Window Help												
	A	В	С	D	E	F	G	Н					
1	Thermlock Gaskets		s										
2													
3		x1	x2										
4	value	3.325326	14.67227										
5					total								
6	cost	5	7		119.3325								
7													
8	constraints												
9		x1	x1^2	x1^3	х2	x2^2							
10	value	3.325326	11.05779	36.77076	14.67227	215.2756	Total						
11	Constraint 1	3	0.25		4	0.3	136.0122	>	125				
12	Constraint 2	13		1			80	>	80				
13	Constraint 3	0.7			1		17	>	17				

Computational Procedures -Nonlinear Programming

Unlike LP methods:

- One disadvantage of NLP is that the solution procedures to solve nonlinear problems do not always yield an optimal solution in a finite number of steps. The solution yielded may only be a local optimum, rather than a global optimum. In other words, it may be an optimum over a particular range, but not overall.
- There is no general method for solving all nonlinear problems.
 - Classical optimization techniques based on calculus, can handle some special cases, usually simpler types of problems.

Gradient method (steepest ascent method)

It is an interactive procedure that moves from one feasible solution to the next in improving the value of the objective function. It has been computerized and can handle problems with both nonlinear constraints and objective.

Separable programming

- Linear representation of nonlinear problem.
- Separable programming deals with a class of problems in which the objective and constraints are approximated by linear functions. In this way, the powerful simplex algorithm may again be applied.

In general, work in the area of NLP is the least charted and the most difficult of all the quantitative analysis models.