
Example 1
consider the function: f(x,y) = x2 — y2

The Hessian matrix of f at (x*,y*) = H

Since this matrix is neither positive definite nor negative definite, the 
point (x* = 0, y* = 0) is a saddle point.

The determinant H1 = 2 (positive), and the determinant 
H2 = 2(-2) -0(0) = -4 (negative). Then H is indefinite.   

These first derivatives are zero at x* = 0 and y* = 0. The Hessian 
matrix of f is: 
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Example 2
Find the critical points of the function:

SOLUTION: The necessary conditions for the existence of 
an extreme point are:

From (1) x1 = 0 or (- ସ
ଷ
), and from (2) x2 = 0 or (-

଼
ଷ

. Then 
these equations are satisfied at the points: 

(0,0), (0,-
଼
ଷ
), (-

ସ
ଷ
, 0), and ( -

ସ
ଷ

, -
଼
ଷ

)

…. 
(1)

… (2)



To find the nature of these extreme points, we 
have to use the sufficiency conditions. The second-
order partial derivatives of f are given by:

The Hessian matrix of f is given 
by:

H( f
)=



H( f )



1.7.1 Multivariable Optimization With 
Equality Constraints

We consider the optimization of continuous functions 
subjected to equality constraints:

Where:

Here m is less than or equal to n; otherwise (if m > n), the 
problem becomes overdefined and, in general, there will be no 
solution. There are several methods available for the solution of 
this problem: The Constrained variation, Jacobian method, 
Methods of direct substitution, and Lagrange multipliers.

1.7 CONSTRAINED PROBLEMS



1.7.1.1 Method of Direct Substitution
For a problem with n variables and m equality 
constraints, it is theoretically possible to solve 
simultaneously the m equality constraints and 
express any set of m variables in terms of the 
remaining n — m variables. When these expressions 
are substituted into the original objective function, 
there results a new objective function involving only 
n — m variables. The new objective function is not 
subjected to any constraint, and hence its optimum 
can be found by using the unconstrained 
optimization techniques.



Example 1

Either x1 or x2 can be eliminated without difficulty. 
Solving for x1,

Substitute for x1 in the Objective Function, the new equivalent 
objective function in terms of a single variable x2 is:

The constraint in the original problem has now been eliminated, and 
f(x2) is an unconstrained function with one independent variable.

……. 
(1)



We can now minimize the new objective function 
by setting the first derivative of f equal to zero, 
and solving for the optimal value of x2:

f”(x) = 28 (positive), then X* is a local minimum.

Once x2* is obtained, then, x1* can be directly obtained via 

the relation (1):                         , then: 

f min = 4(1.071)2 + 5(1.286)2 = 12.85714 



Solving Using Excel

B3:   = D3^2
C3:   = E3^2
F4:    =SUMPRODUCT(B4:C4;B3:C3)
F6:   = SUMPRODUCT(D6:E6;D3:E3)

Problem:













Example 2
The profit analysis model:
Max the profit z = v.p – cf – v.cv …….….. (1)
The demand is represented by: v = 1,500 – 24.6p   ………... (2)   
Where: v = volume (quantity), p = price,

cf = fixed cost = $10,000, cv = variable cost = $8 per unit.
Substituting values of  cf and cv into (1), we obtain:
z = v.p -10,000 – 8v …..…… (3) 
Substituting (2) in (3): 
z = 1500p – 24.6p2 – 10,000 – 8(1,500 – 24.6p) 
z  = 1696.8p -24.6p2 -22,000 …..……. (4)
ௗ௭
ௗ௣

= 1696.8p -49.2p = 0 for the critical points, then:
p* = 34.49
ௗమ௭
ௗ௣మ

= - 49.2 (negative), then p* is a local maximum.
Substituting in (2): v* = 1500 – 24.6(34.49) = 651.55      
Substituting in (3): zmax = (651.55)( 34.49) – 10,000 – 8(651.55) = 7259.56   



1.7.1.2 Lagrange Method

The basic features of the Lagrange multiplier 
method is given initially for a simple problem of 
two variables with one constraint. 
The extension of the method to a general 
problem of n variables with m constraints is 
given later.



Problem with Two Variables and One Constraint.

Consider the problem:
subject to:

λ is called the Lagrange multiplier.

Define Lagrange function:

L is treated as a function of the three variables x1, x2, and λ. 

Theorem: Necessary Conditions for Extremum:



Theorem: Sufficient Condition
A sufficient condition for f(X) to have a relative 
minimum at X* is that the quadratic, Q, defined by:

evaluated at X = X* must be positive definite for all values 
of dX for which the constraints are satisfied.
- If Q is negative definite for all choices of the admissible 

variations dX, X* will be a constrained maximum of f(X).
- It has been shown by Hancock that a necessary condition 
for the quadratic form Q, to be positive (negative) definite
for all admissible variations dX is that each root of the 
polynomial Z, defined by the following determinantal
equation, be positive (negative):

Q = డమ௅
డ௫భడ௫మ
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Example
Find the solution of the following problem using the 
Lagrange multiplier method:
f(x,y) = x-1y-2

Subject to: g(x,y) = x2 + y2 - 4 = 0
The Lagrange function is:
L(x,y,λ) =f(x,y) + λg(x,y) = x -1y-2 + λ(x2 + y2 - 4 )
The necessary conditions for the extreme of f(x, y) give:
ܮ߲
ݔ߲
ܮ߲
ݕ߲
ܮ߲
߲λ

= -x-2y -2 +2λx = 0     ……. (1) 

= -2x -1y -3 +2λy = 0   ……. (2) 

= x2 +y2 -4 = 0           ……. (3) 

λ = ଵ
ଶ

x-3y -2……… (4)

λ = x-1y -4     ……… (5)

From	 4 , 5 : ଵ
ଶ

x -3y -2 = x -1y -4 



ଵ
ଶ

x -3y -2 = x-1y -4                        ଵ
ଶ

y -2 = x2y -4 ଵ
ଶ

y2 = x2

X* = ଵ
ଶ

y*      Or:   x2 = ଵ
ଶ

y2 ………… (6)

(3):  x2 +y2 - 4 = 0

From (6): ଵ
ଶ

y2 +y2 = 4           y2 = ଼
ଷ

y* = 2 ଶ
ଷ

Substituting in (6):   x* = ଶ
ଷ

(5): λ = x-1y -4                      λ* = ଷ
ଶ

ଵ
ଵ଺

଼ଵ
ଵ଺

= ଽ ଷ
ଵଶ଼



The determinant:

0

=
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1

0
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0
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0
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Z= - 0.344 (negative),  Then x*,y* is a relative maximum
f*(x*,y*) = 0.3248

(1.218-z)  (0.974- z) (0) – (3.266)(3.266)     - (0.344)  -(3.266)(2.309)    +

+ (2.309)   (0.344)(3.266) – (0.974-z)(2.309)     = 0



Determinant Calculation

1



R2 R2 + 8R1

-3[1(1)-2(0)] = -3(1) = -3 



http://matrix.reshish.com/determinant.php



Necessary Conditions for a General Problem

The equations can be extended to the case of a general 
problem with n variables and m equality constraints:

subject to:

The Lagrange function, L, in this case is defined by introducing one 
Lagrange multiplier λj for each constraint gj (X) as:

The necessary conditions for the extremum of L, are given by:

=f(x1, x2, ……, xn)



Sufficient Condition
A sufficient condition for f(X) to have relative minimum 
at X* is that the quadratic, Q, defined by:

evaluated at X = X* must be positive definite for all values 
of variations dX for which the constraints are satisfied.
If Q is negative definite for all choices of the admissible 
variations dxi, X* will be a constrained maximum of f(X).
It has been shown by Hancock that a necessary condition for the 
quadratic form Q, to be positive (negative) definite for all 
admissible variations dX is that each root of the polynomial Zi, 
defined by the following determinantal equation, be positive 
(negative):



Where:

This equation on expansion, leads to an (n — m)th-order polynomial
in z. If some of the roots of this polynomial are positive while the 
others are negative, the point X* is not an extreme point.

,



1.7.2 Multivariable Optimization With 
Inequality Constraints

Consider the following problem: Minimize f(X)
subject to: gj(X) ≤ 0, j = 1,2,. . .,m

Kuhn-Tucker Conditions
The conditions to be satisfied at a constrained minimum 
point, X*. These conditions are, in general, not sufficient to 
ensure a relative minimum. However, there is a class of 
problems, called convex programming problems for which 
the Kuhn-Tucker conditions are necessary and sufficient for 
a global minimum.



Kuhn-Tucker Conditions
The Kuhn-Tucker conditions can be stated as follows:

Note that if the problem is one of maximization or if the 
constraints are of the type gj ≥ 0, the λj have to be 
nonpositive. On the other hand, if the problem is one of 
maximization with constraints in the form gj ≥ 0, the λj have 
to be nonnegative.



Types of Nonlinear Programming

Nonlinear objective function, 
linear constraints.
Nonlinear objective function 

and nonlinear constraints.
Linear objective function and 

nonlinear constraints.
32



Nonlinear Objective Function and Linear 
Constraints:

33

Max: 28X1 +   21X2 +   0.25X2
2

Subject to:
X1 +   X2 ≤ 1000 (units of production capacity),

0.5X1 + 0.4X2 ≤ 500   (hours of sales time available).
X1, X2 ≥ 0.    

The Great Western Appliance Company sells two models of toaster ovens, 
the Micro toaster (X1) and the Self-Clean Toaster Oven (X2). 
The firm earns a profit of $28 for each Micro toaster regardless of the 
number sold. Profits for the Self-Clean model, however, increase as more 
units are sold because of fixed overhead. Profit on this model may be 
expressed as 21 X2 + 0.25 X2

2. 
Great Western’s profit is subject to two linear constraints on production 
capacity and sales unit time available. 

When an objective function contains a squared term and the problem 
constraints are linear, it is called a quadratic programming problem.



34

An Excel Formulation of Great Western 
Appliance’s Nonlinear Programming Problem.
An Excel Formulation of Great Western 
Appliance’s Nonlinear Programming Problem.
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Input Screen Max: 28X1 +   21X2 +   0.25X2
2

X1 +      X2 ≤ 1000 
0.5X1 + 0.4X2 ≤ 500   
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Solution to Great Western Appliance’s NLP Problem 
using Excel Solver:
Solution to Great Western Appliance’s NLP Problem 
using Excel Solver:



Both Nonlinear Objective Function and Nonlinear 
Constraints.

38

The annual profit at a medium-sized (200-400 beds) Hospital 
Corporation-owned hospital depends on the number of 
medical patients admitted (X1) and the number of surgical 
patients admitted (X2). The nonlinear objective function for 
Hospicare is:
Max. 13X1 + 6X1X2 + 5X2 + 1/X2.
The corporation identifies three constraints, two of which are 
also nonlinear, that affect operations. They are
2X1

2+ 4X2
2 ≤ 90 (nursing capacity, in thousands of labor-days).

X1 +          ≤ 75 (x-ray capacity, in thousands).
8X1 – 2X2 ≤ 61 (marketing budget required, in thousands of 
$).

3
2X
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Max: 13X1 + 6X1X2 + 5X2 + 1/X2
Subject to:

2X1
2 + 4X2

2 ≤ 90
X1 +    X2

3 ≤ 75
8X1  – 2X2 ≤ 61
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An Excel Formulation of Hospicare Corp.’s 
NLP Problem:
An Excel Formulation of Hospicare Corp.’s 
NLP Problem:

Max: 13X1 + 6X1X2 + 5X2 + 1/X2
2X1

2 + 4X2
2 ≤ 90

X1 +    X2
3 ≤ 75

8X1   – 2X2 ≤ 61
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Linear Objective Function with Nonlinear 
Constraints

43

Min. 5X1 + 7X2
Subject to:
3X1+ 0.25X1

2 + 4X2 + 0.3X2
2 ≥ 125  (hardness constraint),

13X1 + X1
3 ≥ 80 (tensile strength),

0.7X1  + X2  ≥ 17 (elasticity).

Thermlock Corp. produces massive rubber washers and gaskets 
like the type used to seal joints on the NASA Space Shuttles. To do 
so, it combines two ingredients; rubber (X1) and oil (X2). 
The cost of the industrial quality rubber used is $5 per pound and 
the cost of the high viscosity oil is $7 per pound. Two of the three 
constraints Thermlock faces are nonlinear. The firm’s objective 
function and constraints are
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Excel Formulation of Thermlock’s NLP 
Problem:
Excel Formulation of Thermlock’s NLP 
Problem:
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Solution to Thermlock’s NLP Problem Using 
Excel Solver:
Solution to Thermlock’s NLP Problem Using 
Excel Solver:



Computational Procedures -Nonlinear 
Programming

Unlike LP methods:
• One disadvantage of NLP is that the solution procedures 

to solve nonlinear problems do not always yield an 
optimal solution in a finite number of steps. The solution 
yielded may only be a local optimum, rather than a 
global optimum.  In other words, it may be an optimum 
over a particular range, but not overall.

• There is no general method for solving all nonlinear 
problems.

• Classical optimization techniques based on calculus, can 
handle some special cases, usually simpler types of 
problems.

46
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Gradient method (steepest ascent method)

It is an interactive procedure that 
moves from one feasible solution to the 
next in improving the value of the 
objective function. 
It has been computerized and can 
handle problems with both nonlinear 
constraints and objective. 
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 Linear representation of nonlinear 
problem.
Separable programming deals with a 

class of problems in which the 
objective and constraints are 
approximated by linear functions. 
In this way, the powerful simplex 
algorithm may again be applied. 

Separable programming
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In general, work in the area of 
NLP is the least charted and 
the most difficult of all the 
quantitative analysis models.


